↳ ITRS
↳ ITRStoIDPProof
z
Cond_f(TRUE, x, y, z) → f(x, y, +@z(z, 1@z))
f(x, y, z) → Cond_f(>@z(x, +@z(y, z)), x, y, z)
Cond_f1(TRUE, x, y, z) → f(x, +@z(y, 1@z), z)
f(x, y, z) → Cond_f1(>@z(x, +@z(y, z)), x, y, z)
Cond_f(TRUE, x0, x1, x2)
f(x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_f(TRUE, x, y, z) → f(x, y, +@z(z, 1@z))
f(x, y, z) → Cond_f(>@z(x, +@z(y, z)), x, y, z)
Cond_f1(TRUE, x, y, z) → f(x, +@z(y, 1@z), z)
f(x, y, z) → Cond_f1(>@z(x, +@z(y, z)), x, y, z)
(0) -> (1), if ((y[0] →* y[1])∧(+@z(z[0], 1@z) →* z[1])∧(x[0] →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(+@z(z[0], 1@z) →* z[2])∧(x[0] →* x[2]))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
(2) -> (3), if ((z[2] →* z[3])∧(x[2] →* x[3])∧(y[2] →* y[3])∧(>@z(x[2], +@z(y[2], z[2])) →* TRUE))
(3) -> (1), if ((+@z(y[3], 1@z) →* y[1])∧(z[3] →* z[1])∧(x[3] →* x[1]))
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(z[3] →* z[2])∧(x[3] →* x[2]))
Cond_f(TRUE, x0, x1, x2)
f(x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((y[0] →* y[1])∧(+@z(z[0], 1@z) →* z[1])∧(x[0] →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(+@z(z[0], 1@z) →* z[2])∧(x[0] →* x[2]))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
(2) -> (3), if ((z[2] →* z[3])∧(x[2] →* x[3])∧(y[2] →* y[3])∧(>@z(x[2], +@z(y[2], z[2])) →* TRUE))
(3) -> (1), if ((+@z(y[3], 1@z) →* y[1])∧(z[3] →* z[1])∧(x[3] →* x[1]))
(3) -> (2), if ((+@z(y[3], 1@z) →* y[2])∧(z[3] →* z[2])∧(x[3] →* x[2]))
Cond_f(TRUE, x0, x1, x2)
f(x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
(1) (+@z(z[0], 1@z)=z[1]1∧z[1]=z[0]∧y[0]=y[1]1∧x[0]=x[1]1∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧y[1]=y[0]∧x[1]=x[0] ⇒ COND_F(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_F(TRUE, x[0], y[0], z[0])≥F(x[0], y[0], +@z(z[0], 1@z))∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(2) (>@z(x[1], +@z(y[1], z[1]))=TRUE ⇒ COND_F(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_F(TRUE, x[1], y[1], z[1])≥F(x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(3) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(6) (x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(7) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(8) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(9) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(10) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(11) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(12) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(13) (x[0]=x[2]∧+@z(z[0], 1@z)=z[2]∧z[1]=z[0]∧y[0]=y[2]∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧y[1]=y[0]∧x[1]=x[0] ⇒ COND_F(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_F(TRUE, x[0], y[0], z[0])≥F(x[0], y[0], +@z(z[0], 1@z))∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(14) (>@z(x[1], +@z(y[1], z[1]))=TRUE ⇒ COND_F(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_F(TRUE, x[1], y[1], z[1])≥F(x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(15) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(16) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(18) (x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(19) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(20) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(21) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(22) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(23) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(24) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(25) (F(x[1], y[1], z[1])≥NonInfC∧F(x[1], y[1], z[1])≥COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])∧(UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥))
(26) ((UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) ((UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) ((UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) (0 ≥ 0∧(UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(30) (F(x[2], y[2], z[2])≥NonInfC∧F(x[2], y[2], z[2])≥COND_F1(>@z(x[2], +@z(y[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_F1(>@z(x[2], +@z(y[2], z[2])), x[2], y[2], z[2])), ≥))
(31) ((UIncreasing(COND_F1(>@z(x[2], +@z(y[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) ((UIncreasing(COND_F1(>@z(x[2], +@z(y[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) ((UIncreasing(COND_F1(>@z(x[2], +@z(y[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(34) (0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_F1(>@z(x[2], +@z(y[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0∧0 = 0)
(35) (x[2]=x[3]∧y[2]=y[3]∧+@z(y[3], 1@z)=y[2]1∧>@z(x[2], +@z(y[2], z[2]))=TRUE∧z[2]=z[3]∧z[3]=z[2]1∧x[3]=x[2]1 ⇒ COND_F1(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_F1(TRUE, x[3], y[3], z[3])≥F(x[3], +@z(y[3], 1@z), z[3])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
(36) (>@z(x[2], +@z(y[2], z[2]))=TRUE ⇒ COND_F1(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_F1(TRUE, x[2], y[2], z[2])≥F(x[2], +@z(y[2], 1@z), z[2])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
(37) (-1 + x[2] + (-1)y[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + x[2] ≥ 0∧0 ≥ 0)
(38) (-1 + x[2] + (-1)y[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + x[2] ≥ 0∧0 ≥ 0)
(39) (-1 + x[2] + (-1)y[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + x[2] ≥ 0)
(40) (x[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(41) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(42) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(43) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(44) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(45) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(46) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(47) (x[2]=x[3]∧x[3]=x[1]∧y[2]=y[3]∧>@z(x[2], +@z(y[2], z[2]))=TRUE∧z[2]=z[3]∧z[3]=z[1]∧+@z(y[3], 1@z)=y[1] ⇒ COND_F1(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_F1(TRUE, x[3], y[3], z[3])≥F(x[3], +@z(y[3], 1@z), z[3])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
(48) (>@z(x[2], +@z(y[2], z[2]))=TRUE ⇒ COND_F1(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_F1(TRUE, x[2], y[2], z[2])≥F(x[2], +@z(y[2], 1@z), z[2])∧(UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥))
(49) (-1 + x[2] + (-1)y[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + x[2] ≥ 0∧0 ≥ 0)
(50) (-1 + x[2] + (-1)y[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + x[2] ≥ 0∧0 ≥ 0)
(51) (-1 + x[2] + (-1)y[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧-1 + (-1)Bound + (-1)z[2] + (-1)y[2] + x[2] ≥ 0∧0 ≥ 0)
(52) (x[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(53) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(54) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(55) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(56) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(57) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(58) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(F(x[3], +@z(y[3], 1@z), z[3])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
POL(COND_F(x1, x2, x3, x4)) = (-1)x4 + (-1)x3 + x2
POL(TRUE) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(COND_F1(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + x2
POL(F(x1, x2, x3)) = (-1)x3 + (-1)x2 + x1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = 1
COND_F(TRUE, x[0], y[0], z[0]) → F(x[0], y[0], +@z(z[0], 1@z))
F(x[2], y[2], z[2]) → COND_F1(>@z(x[2], +@z(y[2], z[2])), x[2], y[2], z[2])
COND_F1(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
F(x[1], y[1], z[1]) → COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])
COND_F1(TRUE, x[3], y[3], z[3]) → F(x[3], +@z(y[3], 1@z), z[3])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(3) -> (1), if ((+@z(y[3], 1@z) →* y[1])∧(z[3] →* z[1])∧(x[3] →* x[1]))
Cond_f(TRUE, x0, x1, x2)
f(x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (1), if ((y[0] →* y[1])∧(+@z(z[0], 1@z) →* z[1])∧(x[0] →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(+@z(z[0], 1@z) →* z[2])∧(x[0] →* x[2]))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
Cond_f(TRUE, x0, x1, x2)
f(x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((y[0] →* y[1])∧(+@z(z[0], 1@z) →* z[1])∧(x[0] →* x[1]))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
Cond_f(TRUE, x0, x1, x2)
f(x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)
(1) (F(x[1], y[1], z[1])≥NonInfC∧F(x[1], y[1], z[1])≥COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])∧(UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥))
(2) ((UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0)
(5) (0 = 0∧(UIncreasing(COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(6) (+@z(z[0], 1@z)=z[1]1∧z[1]=z[0]∧y[0]=y[1]1∧x[0]=x[1]1∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧y[1]=y[0]∧x[1]=x[0] ⇒ COND_F(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_F(TRUE, x[0], y[0], z[0])≥F(x[0], y[0], +@z(z[0], 1@z))∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(7) (>@z(x[1], +@z(y[1], z[1]))=TRUE ⇒ COND_F(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_F(TRUE, x[1], y[1], z[1])≥F(x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(8) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(9) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(10) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ -1 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(11) (x[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(12) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(13) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(14) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(15) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(16) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
(17) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧0 ≥ 0∧(UIncreasing(F(x[0], y[0], +@z(z[0], 1@z))), ≥))
POL(COND_F(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + x2
POL(TRUE) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(F(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + x1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_F(TRUE, x[0], y[0], z[0]) → F(x[0], y[0], +@z(z[0], 1@z))
COND_F(TRUE, x[0], y[0], z[0]) → F(x[0], y[0], +@z(z[0], 1@z))
F(x[1], y[1], z[1]) → COND_F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], z[1])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
Cond_f(TRUE, x0, x1, x2)
f(x0, x1, x2)
Cond_f1(TRUE, x0, x1, x2)